

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name			
Heat and mass transfer			
Course			
Field of study		Year/Semester	
Aerospace Engineering		2/4	
Area of study (specialization)		Profile of study	
Onboard systems and aircraft propu	Ilsion	general academic	
Level of study		Course offered in	
First-cycle studies		polish	
Form of study		Requirements	
full-time		compulsory	
Number of hours			
Lecture	Laboratory classes	s Other (e.g. online)	
15	15		
Tutorials	Projects/seminars	5	
15	15		
Number of credit points			
5			
Lecturers			
Responsible for the course/lecturer	:	Responsible for the course/lecturer:	
dr inż. Robert Kłosowiak		-	
email: robert.klosowiak@put.pozna	n.pl		
tel. 61 665 23 31			
Maszyn Roboczych i Transportu			

ul. Piotrowo 3; 60-965 Poznań

Prerequisites

Basic knowledge of selected heat flow processes in heat-flow machines and equipment. The ability to describe and calculate complex heat flow processes. The ability to effectively self-study in a field related to the chosen field of study.

Course objective

Acquaintance with complex heat flow processes and energy conservation equations including convection processes realizing momentum exchange. Getting to know the methods of describing various heat flow processes occurring in the assumed processes of thermal and mechanical energy conversion in order to modernize or rebuild technological systems in areas related to thermal energy, heating and

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

cooling. Practical mastery of the ability to describe the implementation of effective thermal processes in which heat, momentum and mass exchange processes occur

Course-related learning outcomes

Knowledge

KIL_W01 has knowledge in mathematics, including algebra, analysis, theory of differential equations, probability studies, analytical geometry necessary to understand and describe basic issues related to aviation engineering

KIL_W12 has expanded knowledge necessary to understand profile subjects and specialist knowledge about construction, methods of construction, manufacture, operation, aircraft control, safety systems, economic, social and environmental impact in the field of aviation engineering for selected specialties:

- 1. Piloting of aircraft
- 2. Aircraft engines and airframes

3. On-board systems and aviation propulsion

KIL_W17 has ordered, theoretically founded general knowledge covering key issues in the field of technical thermodynamics, i.e. the theory of thermodynamic transformations, heat flow, heat and cooling machines

Skills

KIL_U06 has the ability to self-study using modern teaching tools, such as remote lectures, websites and databases, teaching programs, e-books

KIL_U08 can obtain information from literature, the Internet, databases and other sources. Is able to integrate obtained information, interpret and draw conclusions from them

KIL_U14 can carry out elementary technical calculations in the field of fluid mechanics and thermodynamics, such as heat and mass balances, pressure losses in flows around technical flying objects and their modules, select parameters of fans, compressors and turbines for flow systems, as well as calculate thermodynamic waveforms heat machines

Social competences

KIL_K01 Is aware of the importance of maintaining the principles of professional ethics.

KIL_K03 Understands the need for critical assessment of knowledge and continuous learning.

KIL_K06 can inspire and organize the learning process of others.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

continuous assessment in every class, rewarding activity and quality of perception.

written final exam

Blackboard exercises:

test and rewarding knowledge necessary to implement the problems posed in a given area of computational tasks,

continuous assessment, during each class - rewarding the increase in the ability to use known principles and methods,

assessment of knowledge and skills related to the implementation of the exercise task,

Laboratory exercises:

test and rewarding knowledge necessary to implement the problems posed in a given area of laboratory tasks,

assessment of knowledge and skills related to the implementation of the laboratory exercise, assessment of the report of the exercise.

Programme content

Introduction to methods for describing heat transfer processes. Conduction in typical geometric configurations. Dimensional analysis and similarity conditions. Introduction to numerical methods. Heat convection - differential equation, turbulence models. Convection in closed channels. Convection by flowing around the surface. Convection in gaps. Thermal radiation. Heat transfer at boiling and condensation. Heat exchangers. Fundamentals of mass diffusion and convection

Teaching methods

lecture, description, discussion, blackboard exercises, independent practical exercises, laboratories

Bibliography

Basic

- 1. Brodowicz K.: Teoria wymienników ciepła i masy, PWN 1982
- 2. Hobler T.: Ruch ciepła i wymienniki, WNT 1979
- 3. Kostowski E.: Przepływ ciepła, Wyd. P. Śl. 1991
- 4. Kostowski E.: Zbiór zadań z przepływu ciepła, Wyd. P. Śl. 1988
- 5. Staniszewski B. Red.: Wymiana ciepła ? zadania i przykłady, PWN 1965
- 6. Staniszewski B.: Wymiana ciepła, PWN 1979
- 7. Wiśniewski St., Wiśniewski T.: Wymiana ciepła, WNT 1997

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

8. Holman J.P., Heat transfer, London McGraw-Hill 1992

9. Incropera F.P., De Witt D.P.: Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York 2002

Additional

- 1. Madejski J.: Teoria wymiany ciepła, Szczecin, WUPSz 1998
- 2. Bejan A.: Heat Transfer, John Wiley & Sons, Inc., New York 1993
- 3. Cengel Y.A.: Heat and Mass Transfer, Mc Graw Hill, New York 2006

Breakdown of average student's workload

	Hours	ECTS
Total workload	108	5,0
Classes requiring direct contact with the teacher	68	3,0
Student's own work (literature studies, preparation for	40	2,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate